Bài tập

star

Câu hỏi số

1/10

clock

Điểm

0

Trên tổng số 100

Bật/ Tắt âm thanh báo đúng/sai

1
2
3
4
5
6
7
8
9
10

Điểm 0

Câu 1

Chọn đáp án đúng nhất

Với điều kiện nào thì biểu thức `(x-1)/(3x)` gọi là phân thức?

`x ne 1`

`x =0`

`x ne 0`

`x in ZZ`

Xem gợi ý

Gợi ý

Biểu thức `A/B` gọi là phân thức với `A, B` là các đa thức và `B` khác đa thức `0`

Đáp án đúng là:

`x ne 0`

Kiểm tra

Hướng dẫn giải chi tiết

Để `(x-1)/(3x)` là phân thức 

`=>3x ne 0 => ``x ne 0`

Câu 2

Chọn đáp án đúng nhất

Cho `(xy^2)/(5y)=A/(10xy)`. Đa thức `A` là

`2xy`

`2x^2y^2`

`2x^2y`

`2xy^2`

Xem gợi ý

Gợi ý

Áp dụng định nghĩa hai phân thức bằng nhau

              `A/B=C/D` nếu `A.D = B.C`

Đáp án đúng là:

`2x^2y^2`

Kiểm tra

Hướng dẫn giải chi tiết

        `(xy^2)/(5y)=A/(10xy)`

`=> xy^2.(10xy)=A.5y`

`=> 10x^2y^3=A.5y`

`=> 2x^2y^2 .5y=A.5y`

`=> A= 2x^2y^2`

Vậy `A= 2x^2y^2`

Câu 3

Chọn đáp án đúng nhất

Rút gọn phân thức `(x^2+3x+x+3)/(4x^2+12x)` ta được một phân thức có mẫu là:

`x+3`

`4x+3`

`4x`

`x+1`

Xem gợi ý

Gợi ý

Thực hiện các bước rút gọn phân thức:

Bước 1: Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung

Bước 2: Chia cả tử và mẫu cho nhân tử chung

Từ đó chỉ ra mẫu của phân thức sau khi rút gọn

Đáp án đúng là:

`4x`

Kiểm tra

Hướng dẫn giải chi tiết

     `(x^2+3x+x+3)/(4x^2+12x)`

`=((x^2+3x)+x+3)/(4x(x+3))`

`=(x(x+3)+x+3)/(4x(x+3))`

`= ((x+1)(x+3))/(4x(x+3))`

`=(x+1)/(4x)`

Vậy mẫu của phân thức sau khi rút gọn là `4x`

Câu 4

Chọn đáp án đúng nhất

Quy đồng mẫu thức các phân thức `9/(2xy); x/(3yz` ta được kết quả là:

`(27z)/(6xyz); (2x^2)/(6xyz)`

`(9z)/(6xyz); (3x^2)/(6xyz)`

`(27)/(6xyz); (3x)/(6xyz)`

`(27)/(6xyz); (6x)/(6xyz)`

Xem gợi ý

Gợi ý

Áp dụng quy tắc tìm mẫu thức chung của các phân thức

Đáp án đúng là:

`(27z)/(6xyz); (2x^2)/(6xyz)`

Kiểm tra

Hướng dẫn giải chi tiết

Ta có phần hệ số của mẫu thức chung là `BCN N(2; 3) = 6`

Phần biến số là: `xyz`

Suy ra mẫu chung của các phân thức `9/(2xy); x/(3yz``6xyz`

Nhân tử phụ của mẫu thức `2xy``3z`;  nhân tử phụ của mẫu thức `3yz``2x`

Do đó:

`9/(2xy)= (9.3z)/(2xy.3z)=``(27z)/(6xyz)`

`x/(3yz)= (x.2x)/(3yz.2x) =``(2x^2)/(6xyz)`

Câu 5

Chọn đáp án đúng nhất

Các phân thức  `6/(x^2+4x);3/(2x+8)` có mẫu thức chung là:

`x(2x+1)`

`2x(x+2)`

`2x(x+4)`

`x(x+2)(x+4)`

Xem gợi ý

Gợi ý

Áp dụng quy tắc tìm mẫu thức chung của các phân thức

Đáp án đúng là:

`2x(x+4)`

Kiểm tra

Hướng dẫn giải chi tiết

Ta có: `x^2+4x=x(x+4)`

          `2x+8=2(x+4)`

Do đó mẫu thức chung là `2x(x+4)`

Câu 6

Chọn đáp án đúng nhất

Cho `(2x)/y=(2x.M)/(y.M)=(2x^2+4x)/(xy+2y)`. Đa thức `M` là:

`x-2`

`x+2`

`x+4`

`x-4`

Xem gợi ý

Gợi ý

Phân tích tử và mẫu của phân thức `(2x^2+4x)/(xy+2y)` thành nhân tử rồi tìm nhân tử chung của chúng

Đáp án đúng là:

`x+2`

Kiểm tra

Hướng dẫn giải chi tiết

      `(2x^2+4x)/(xy+2y) =(2x.(x+2))/(y.(x+2))`

Vậy đa thức `M` là `x+2`

Câu 7

Chọn đáp án đúng nhất

Cho phân thức `A=(x^2+6x+9)/(x+3)`. Chọn phát biểu sai.

Điều kiện xác định của phân thức `A` là `x ≠ - 3`

Phân thức `A` sau khi rút gọn là `x + 3`

Tại `x = - 3` thì `A = 0`

Tại `x = 1` thì `A = 4`

Đáp án đúng là:

Tại `x = - 3` thì `A = 0`

Kiểm tra

Hướng dẫn giải chi tiết

Ta thấy phân thức `A` xác định khi `x + 3 ≠ 0 => x ≠ - 3`

Do đó không tồn tại giá trị của `A` tại `x = -3`

Vậy phát biểu sai là:

       “Tại `x = - 3` thì `A = 0`

Câu 8

Chọn đáp án đúng nhất

Quy đồng mẫu thức các phân thức `(x-1)/(x^2+4x+4);x/(3x+6)` ta được:

`(x-1)/(x^2+4x+4)=A/(3(x+2)^2); x/(3x+6) =B/(3(x+2)^2`

Các đa thức `A` và `B` là:

`A = 2x -6; B = x^2 + 2`

`A = x + 2; B = x^2 + 2x`

`A = 3x - 3; B = x^2 + 2x`

`A = 3x + 3; B = x^2 - 2x`

Đáp án đúng là:

`A = 3x - 3; B = x^2 + 2x`

Kiểm tra

Hướng dẫn giải chi tiết

Mẫu số chung `3(x+2)^2`

Mẫu thức `x^2 + 4x + 4 = (x + 2)^2` có nhân tử phụ là `3`

Do đó `(x-1)/(x^2+4x+4)`

`=(3(x-1))/(3(x+2)^2)=(3x-3)/(3(x+2)^2)`

`=> A = 3x -3`

Mẫu thức `3x + 6 = 3(x + 2)` có nhân tử phụ là `x + 2`

Do đó `x/(3x+6)`

`=(x(x+2))/(3(x+2)(x+2))=(x^2+2x)/(3(x+2)^2)`

`=> B= x^2+2x`

Vậy `A = 3x - 3; B = x^2 + 2x`

Câu 9

Nối những đáp án đúng với nhau

Nối các cột bên trái với cột bên phải để được các đẳng thức đúng:

1
`x+2`
2
`1/(x-2)`
3
`(x-2)/(x+2)`
`(x^2-4)/(x-2)`
1
`(x+2)/(x^2-4)`
2
`(x^2-4x+4)/(x^2-4)`
3
Xem gợi ý

Gợi ý

Áp dụng định nghĩa hai phân thức bằng nhau hoặc tính chất cơ bản của phân thức để chỉ ra các phân thức bằng nhau

Đáp án đúng là:
1
`x+2`
2
`1/(x-2)`
3
`(x-2)/(x+2)`
`(x^2-4)/(x-2)`
`(x+2)/(x^2-4)`
`(x^2-4x+4)/(x^2-4)`
Kiểm tra

Hướng dẫn giải chi tiết

  • `x+2 =(x+2)/1`

`=((x+2)(x-2))/(1.(x-2))=``(x^2-4)/(x-2)`

  • `1/(x-2)=(1.(x+2))/((x-2)(x+2))`

`=(x+2)/(x^2-4)`

  • `(x-2)/(x+2)=((x-2)(x-2))/((x+2)(x-2))`

`=(x^2-4x+4)/(x^2-4)`

Câu 10

Chọn đáp án đúng nhất

Cho phân thức `P=(3x^2+3)/((x^2+1)(x-3))`.

 Tại `| 2x - 1 | = 5` thì giá trị của phân thức `P` là:

`-3/5`

`1/3`

`(-1)/5`

Không xác định

Xem gợi ý

Gợi ý

Bước 1: Tìm điều kiện xác định của phân thức `P`

Bước 2:  Rút gọn biểu thức `P`

Bước 3: Từ `| 2x - 1 | = 5` suy ra giá trị `x` thỏa mãn điều kiện xác định và thay vào biểu thức `P` đã rút gọn

Đáp án đúng là:

`-3/5`

Kiểm tra

Hướng dẫn giải chi tiết

ĐKXĐ: `x ne 3`

`P=(3x^2+3)/((x^2+1)(x-3))`

`P=(3(x^2+1))/((x^2+1)(x-3))`

`P=3/(x-3)`

Do đó `P= 3/(x-3)` với `x ne 3`

Vì `|2x-1|=5`

`=> 2x-1=5` hoặc `2x-1=-5`

Với `2x-1=5`

`=> 2x=6 => x=3` (loại)

Với `2x-1=-5=> 2x=-4`

`=> x=-2` (thỏa mãn ĐKXĐ)

Vậy với `x=-2` giá trị của `P` là:

       `P=3/(-2-3)=``-3/5`

zalo