Gợi ý
Khi cộng cùng một số vào cả hai vế của bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho
Hotline: 1900 633 551
Điểm 0
Góp ý - Báo lỗi
Điền đáp án đúng
Điền dấu thích hợp (>; = ; <) vào ô trống:
So sánh x và y biết x-53<y-53
x y
Gợi ý
Khi cộng cùng một số vào cả hai vế của bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho
x<y
Hướng dẫn giải chi tiết
x-53<y-53
x-53+53<x-53+53
x<y
Vậy x<y
Điền đáp án đúng
Không thực hiện phép tính điền dấu thích hợp (>; = ; <) vào ô trống:
(-13)(-5) (-13).2
Gợi ý
Khi nhân cả hai vế bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho
(-13)(-5)>(-13).2
Hướng dẫn giải chi tiết
Ta có:
-5<2
⇔(-13).(-5)>(-13).2
Vậy (-13)(-5)>(-13).2
Chọn đáp án đúng nhất
Hình vẽ sau biểu diễn tập nghiệm của bất phương trình nào?
x≤5
x<5
x>5
x≥5
x<5
Chọn đáp án đúng nhất
Giải phương trình 2-x3<3-2x5 ta được tập nghiệm?
S={x∣x>-1}
S={x∣x<-1}
S={x∣x>1}
S={x∣x<1}
Gợi ý
Quy đồng mẫu số ở hai vế sau đó khử mẫu
Giải bất phương trình và tìm x
S={x∣x<-1}
Hướng dẫn giải chi tiết
2-x3<3-2x5
⇔5(2-x)15<3(3-2x)15
⇔5(2-x)<3(3-2x)
⇔10-5x<9-6x
⇔-5x+6x<9-10
⇔x<-1
Vậy bất phương trình có tập nghiệm S={x∣x<-1}
Điền đáp án đúng
Tìm số nguyên dương x thỏa mãn bất phương trình:
x2-3x+1>2(x-1)-x(3-x)
Vậy x=
Gợi ý
Giải bất phương trình x2-3x+1>2(x-1)-x(3-x) bằng cách rút gọn hai vế sau đó chuyển vế
Tìm tập nghiệm của bất phương trình từ đó tìm ra số nguyên dương x thỏa mãn
1
Hướng dẫn giải chi tiết
x2-3x+1>2(x-1)-x(3-x)
⇔x2-3x+1>2x-2-3x+x2
⇔3>2x
⇔x<32
Vậy số nguyên dương x thỏa mãn bất phương trình là x=1
Chọn đáp án đúng nhất
Tập nghiệm của phương trình 2|x+3|+3=9 là:
S={0;3}
S={-3;0}
S={-6;0}
S={0;6}
Gợi ý
Phương pháp |f(x)|=a(a≥0)⇔[f(x)=af(x)=-a
S={-6;0}
Hướng dẫn giải chi tiết
2|x+3|+3=9
⇔2|x+3|=6
⇔|x+3|=3
⇔[x+3=3x+3=-3
⇔[x=0x=-6
Vậy phương trình có tập nghiệm S={-6;0}
Chọn đáp án đúng nhất
Phương trình |x-6|=-5x+9 có nghiệm là:
x=34 và x=52
x=34
x=-12 và x=54
x=12
Gợi ý
Phương pháp |f(x)|=g(x)⇔{g(x)≥0[f(x)=g(x)f(x)=-g(x)
x=34
Hướng dẫn giải chi tiết
Điều kiện -5x+9≥0⇔x≤95
Khi đó |x-6|=-5x+9
⇔[x-6=-5x+9x-6=5x-9
⇔[x+5x=9+6x-5x=-9+6
⇔[6x=15-4x=-3
⇔[x=52(loại)x=34(thỏamã
Vậy phương trình có tập nghiệm S = {3/4}
Chọn đáp án đúng nhất
Số nguyên nhỏ nhất thỏa mãn bất phương trình x(5x+1) +4(x+3) > 5x^2 là
x=-3
x=0
x=-1
x=-2
Gợi ý
Thu gọn vế trái của bất phương trình sau đó tìm tập nghiệm
x=-2
Hướng dẫn giải chi tiết
x(5x+1) +4(x+3) > 5x^2
<=> 5x^2 +x+4x+12 > 5x^2
<=> 5x +12 > 0
<=> 5x > -12
<=> x > -12/5
Số nguyên nhỏ nhất thỏa mãn bất phương trình là -2
Chọn đáp án đúng nhất
Phương trình |x-3|=|4-x| có mấy nghiệm?
Vô nghiệm
Một nghiệm
Hai nghiệm
Ba nghiệm
Gợi ý
Phương pháp |f(x)|=|g(x)| <=> [(f(x)=g(x),,,,),(f(x)=-g(x),,,,):}
Một nghiệm
Hướng dẫn giải chi tiết
|x-3|=|4-x|
<=> [(x-3=4-x,,,,),(x-3=-(4-x),,,,):}
<=> [(x+x=4+3,,,,),(x-x=-4+3,,,,):}
<=> [(2x=7,,,,),(0x=-1,,,,):}
<=> [(x=7/2,,,,),(x in cancelO,,,,):}
Vậy phương trình trên có một nghiệm là x = 7/2
Vậy phương trình trên có một nghiệm
Chọn đáp án đúng nhất
Tập nghiệm của bất phương trình (x-3)/(x+4) < 0 là
x > 4
-4 < x < 3
x < 3
x ne -4
Gợi ý
(A(x))/(B(x)) < 0 <=> A(x) và B(x) trái dấu
Trường hợp 1: A(x) > 0 và B(x) > 0
Trường hợp 2: A(x) < 0 và B(x) < 0
Giải bất phương trình và tìm x
-4 < x < 3
Hướng dẫn giải chi tiết
(x-3)/(x+4) > 0 <=> x-3 và x+4 cùng dấu
Xét
Trường hợp 1:
{(x -3 < 0,,,,),(x+4 > 0,,,,):}
<=> {(x < 3,,,,),(x > -4,,,,):}
<=> -4 < x < 3
Trường hợp 2:
{(x-3 > 0,,,,),(x+4 < 0,,,,):}
<=> {(x > 3,,,,),(x < -4,,,,):}
=> Bất phương trình vô nghiệm
Vậy -4 < x < 3